Carbon dioxide (CO2) is the primary greenhouse gas emitted through human activities. In 2013, CO2 accounted for about 82% of all U.S. greenhouse gas emissions from human activities. Carbon dioxide is naturally present in the atmosphere as part of the Earth’s carbon cycle (the natural circulation of carbon among the atmosphere, oceans, soil, plants, and animals). Human activities are altering the carbon cycle—both by adding more CO2 to the atmosphere and by influencing the ability of natural sinks, like forests, to remove CO2 from the atmosphere. While CO2 emissions come from a variety of natural sources, human-related emissions are responsible for the increase that has occurred in the atmosphere since the industrial revolution. [1]

U.S. Carbon Dioxide Emissions, By Source

Pie chart that shows emissions by use. 37 percent is electricity, 31 percent is transportation, 15 percent is industry, 10 percent is residential and commercial, and 6 percent is other (non-fossil fuel combustion).

Note: All emission estimates from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013.

The main human activity that emits CO2 is the combustion of fossil fuels (coal, natural gas, and oil) for energy and transportation, although certain industrial processes and land-use changes also emit CO2. The main sources of CO2emissions in the United States are described below.

  • Electricity. Electricity is a significant source of energy in the United States and is used to power homes, business, and industry. The combustion of fossil fuels to generate electricity is the largest single source of CO2 emissions in the nation, accounting for about 37% of total U.S. CO2emissions and 31% of total U.S. greenhouse gas emissions in 2013. The type of fossil fuel used to generate electricity will emit different amounts of CO2. To produce a given amount of electricity, burning coal will produce more CO2than oil or natural gas.
  • Transportation. The combustion of fossil fuels such as gasoline and diesel to transport people and goods is the second largest source of CO2 emissions, accounting for about 31% of total U.S. CO2 emissions and 26% of total U.S. greenhouse gas emissions in 2013. This category includes transportation sources such as highway vehicles, air travel, marine transportation, and rail.
  • Industry. Many industrial processes emit CO2 through fossil fuel combustion. Several processes also produce CO2 emissions through chemical reactions that do not involve combustion, for example, the production and consumption of mineral products such as cement, the production of metals such as iron and steel, and the production of chemicals. Fossil fuel combustion from various industrial processes accounted for about 15% of total U.S. CO2 emissions and 12% of total U.S. greenhouse gas emissions in 2013. Note that many industrial processes also use electricity and therefore indirectly cause the emissions from the electricity production.

Carbon dioxide is constantly being exchanged among the atmosphere, ocean, and land surface as it is both produced and absorbed by many microorganisms, plants, and animals. However, emissions and removal of CO2 by these natural processes tend to balance. Since the Industrial Revolution began around 1750, human activities have contributed substantially to climate change by adding CO2 and other heat-trapping gases to the atmosphere.

In the United States, since 1990, the management of forests and non-agricultural land has acted as a net sink of CO2, which means that more CO2 is removed from the atmosphere, and stored in plants and trees, than is emitted. This sink offset about 13% of total emissions in 2013 and is discussed in more detail in the Land Use, Land-Use Change, and Forestry section.

To find out more about the role of CO2 warming the atmosphere and its sources, visit the Causes of Climate Changepage and the Greenhouse Gas Indicators page in the Science section.

Top of page

Carbon dioxide (CO2) emissions in the United States increased by about 7% between 1990 and 2013. Since the combustion of fossil fuel is the largest source of greenhouse gas emissions in the United States, changes in emissions from fossil fuel combustion have historically been the dominant factor affecting total U.S. emission trends. Changes in CO2 emissions from fossil fuel combustion are influenced by many long-term and short-term factors, including population growth, economic growth, changing energy prices, new technologies, changing behavior, and seasonal temperatures. Between 1990 and 2013, the increase in CO2 emissions corresponded with increased energy use by an expanding economy and population, and an overall growth in emissions from electricity generation. Transportation emissions also contributed to the 7% increase, largely due to an increase in miles traveled by motor vehicles.

U.S. Carbon Dioxide Gas Emissions, 1990-2013

Line graph that shows the U.S. carbon dioxide emissions from 1990 to 2013. In 1990 carbon dioxide emissions started around 5,000 million metric tons. The emissions rose to about 6,000 million metric tons in 2000 where it remained until about 2008 when it began to decline. By 2009, the carbon dioxide emissions were at about 5,500 million metric tons, followed by a slight recovering in 2010 to about 5,700 million metric tons and a decrease in 2013 to about 5,500 million metric tons.

Note: All emission estimates from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013.

 

Going forward, CO2 emissions in the United States are projected to grow by about 1.5% between 2005 and 2020. [2]

Top of page

Reducing Carbon Dioxide Emissions

The most effective way to reduce carbon dioxide (CO2) emissions is to reduce fossil fuel consumption. Many strategies for reducing CO2 emissions from energy are cross-cutting and apply to homes, businesses, industry, and transportation.

EPA is taking common sense regulatory actions to reduce greenhouse gas emissions from our nation’s largest sources, including power plants and motor vehicles.

Examples of Reduction Opportunities for Carbon Dioxide
Strategy Examples of How Emissions Can be Reduced
Energy Efficiency Improving the insulation of buildings, traveling in more fuel-efficient vehicles, and using more efficient electrical appliances are all ways to reduce energy consumption, and thus CO2 emissions.

Energy Conservation Reducing personal energy use by turning off lights and electronics when not in use reduces electricity demand. Reducing distance traveled in vehicles reduces petroleum consumption. Both are ways to reduce energy CO2 emissions through conservation.

Learn more about What You Can Do at Home, at School, in the Office, and on the Road to save energy and reduce your carbon footprint.

Fuel Switching Producing more energy from renewable sources and using fuels with lower carbon contents are ways to reduce carbon emissions.
Carbon Capture and Sequestration Carbon dioxide capture and sequestration is a set of technologies that can potentially greatly reduce CO2 emissions from new and existing coal- and gas-fired power plants, industrial processes, and other stationary sources of CO2. Learn more.

Top of page

*Carbon dioxide’s lifetime is poorly defined because the gas is not destroyed over time, but instead moves among different parts of the ocean–atmosphere–land system. Some of the excess carbon dioxide will be absorbed quickly (for example, by the ocean surface), but some will remain in the atmosphere for thousands of years, due in part to the very slow process by which carbon is transferred to ocean sediments.

References

1. NRC (2010). Advancing the Science of Climate Change . Link to EPA's External Link Disclaimer National Research Council. The National Academies Press, Washington, DC, USA.

2. U.S. Department of State (2007). Fourth Climate Action Report to the UN Framework Convention on Climate Change:Projected Greenhouse Gas Emissions. U.S. Department of State, Washington, DC, USA.